
A
rithmetical operations are immensely useful but can be taken
only so far. We have reached a point where geometry and
algebra need to be applied to the concepts of the previous

chapters. Hopefully, the reader will see that without these concepts,
exploring more involved real-world problems is not possible. 

Explanations and definitions are given as the need arises. Though
the reader is assumed to know little of the subject, he or she is
required to remember well what has been stated. It may be best to
have a pencil handy when reading the next two chapters and to pro-
ceed slowly. Much can still be gained by reading Chapters Seven and
Eight even if all the mathematics is not initially understood. 

* * * 

Since we relate better to pictures than words or numbers, mathe-
matical equations are usually represented graphically. When it comes
to science, the expression, “One picture is worth a thousand words”
is invaluable, especially when that “picture” is in the form of a graph.
Interestingly enough, the idea of using mathematical relationships to
describe reality goes back to antiquity, but the notion of associating a
formula with a graph to express real-world phenomena is relatively
recent. We begin an exploration of these ideas and their uses by
treading back a few hundred years.

* * * 

Beyond Arithmetic

C H A P T E R S E V E N
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Tycho, though an extraordinary astronomer, lacked the mathematical
savvy necessary to refine Copernicus’s planetary model. But Tycho’s
assistant, Johannes Kepler, who inherited the data after Tycho’s death,
did possess the mathematical sophistication and perseverance to
properly analyze it. After two decades of work, Kepler had finished
the last of what has become known as Kepler’s Three Laws of
Planetary Motion. 

Kepler’s first law transformed Copernicus’s circular orbits into
ellipses which produced a more accurate model for planetary motion.
His other two laws involved the changing velocities planets undergo
in their motion about the sun and the relationship between a planet’s
periodicity and its distance from the sun. 

The significance of both Copernicus’s and Kepler’s work was in the
preeminent role mathematics played in describing the physical world.
They had transcended classical Greek thought by allowing the data to
freely determine the geometry, rather than a supposed geometry forc-
ing itself upon the “data.” To the Greeks, “data” was meaningless,
since they did not usually conduct experiments. Their “data” involved
observing nature and then forming conclusions without testing.
Curiously, modern physicists are more apt to place geometry (sym-
metries in nature) above all else. Perhaps we have come full circle. 

Galileo Galilei was a contemporary of Kepler. He, more than any-
one, is often credited with being the first true experimental scientist.
Galileo conducted well designed experiments, wherein data was col-
lected and analyzed mathematically. He sought relationships between
variables, such as time and distance. One of Galilieo’s many achieve-
ments was discovering the relationship between time and distance for
falling objects near the Earth’s surface. Much of his data analysis and
thought experiments disproved a good deal of classical Greek think-
ing. 

You may remember from your school days that it was Galileo who
presumably dropped two different weights from the Tower of Pisa
and showed that both reached the ground in essentially the same
time—thereby proving all objects fall at the same rate. What you may
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It wasn’t until the sixteenth century that the idea of a stationary
Earth and geocentric model (Earth centered) of the universe began to
crumble. Copernicus’s book De Revolutions, which advocated a helio-
centric (sun centered) solar system, was published at the time of his
death. Many believe this was intended to protect Copernicus from
difficulties with the Church, which dogmatically held to a geocentric
view. For Copernicus, the attraction of a heliocentric model of the
solar system was its geometric and mathematical simplicity. This atti-
tude, reducing complex ideas to the simplest possible mathematical
and geometrical representations, is at the heart of modern scientific
thought.

The structure of the geocentric universe in the sixteenth century
was based largely on the writings of Ptolemy, and before him,
Aristotle. It was a complicated mixture of circular motions like those
inside a spring-wound watch. The need for such complexity arose by
insisting that the Earth occupy the center of creation and that all
heavenly motion be circular. The reasoning behind this unyielding
paradigm (the geocentric concept was accepted for 1800 years) was
based on erroneous perception and inflated ego. It appeared that all
creation circled about the Earth and that God’s grandest creation,
man, should occupy center stage. It was also terribly difficult to argue
for a moving Earth, since “common sense” told people they were not
in motion. But Copernicus favored mathematical simplicity over
appearance and dogma. Since his heliocentric model gave similar
results to the geocentric model, why bother, he reasoned, to keep the
more complicated structure. Copernicus’s belief in the economy of
creation is still echoed today. 

Though Copernicus’s model was closer to reality than Ptolemy’s, it
was still seriously flawed. Copernicus had correctly reasoned that the
sun was the central body of the solar system but he held to the classi-
cal Greek view that the circle, “being the most perfect of forms,”
must necessarily represent the orbits of all heavenly bodies. 

By the year 1600, the Danish astronomer Tycho Brahe (1546-
1601) had compiled the most accurate planetary data then known.
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was in providing the idea for associating algebraic formulas with geo-
metrical shapes. Those who followed him were responsible for the
creation of what has become known as the Cartesian Coordinate
System.2

The Cartesian Coordinate System

The Cartesian coordinate system is a useful tool for understanding
many present day problems. An explanation of the Cartesian coordi-
nate system begins with the number line.

The typical number line has zero placed at its center with negative
numbers to the left and positive numbers to the right. The number
line in Figure 7.1 is one-dimensional, meaning only one variable is
used to describe a quantity. A thermometer is an example of a vertical

number line with temperature as the only variable.
Number lines offer a concise visual representation of numerical

data. Figure 7.2 shows the distances between Santa Barbara,

California and Heppner, Oregon, as well as between Santa Barbara
and Ephrata, Washington. The lengths of the two lines gives an
immediate “feel” of the comparative distances.
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not remember, is that his discovery showed that the mathematical
relationship between time and distance for a falling object is nonlin-
ear. That is to say, a falling object (strictly speaking in a vacuum) does
not fall equal distances in equal intervals of time. Just as Copernicus
and Kepler had done, Galileo let the data interpret the physical
world. In the second half of the seventeenth century, the famous Sir
Isaac Newton unified the work of Kepler and Galileo into three basic
laws of nature which accurately described terrestrial and heavenly
motion.

* * *

The key idea in using mathematical data is in defining the correct
relationship between the independent variable and the dependent
variable. For instance, if a person is paid five dollars an hour for per-
forming a task, then his earnings are dependent on the time he
works. Time is therefore the independent variable, and earnings,
the dependent variable. A simple formula can be written for this
relationship. If “t” represents the time worked, then $5.00 × t equals
the money earned. The only algebra involved is in replacing the vari-
able “t” with the appropriate number of hours worked. For example,
if 4 hours and 45 minutes (4.75 hours) are worked, the pay is
$5.00/hour × 4.75 hours = $23.75.

Often, when dealing with algebraic formulas, the multiplication
symbol × is not written. This is done to eliminate any confusion
between the multiplication symbol × and the variable x, thus simpli-
fying the notation. The expression $5.00 × t, is therefore written as
$5.00t, where the multiplication is now implicitly understood.

During the sixteenth and seventeenth centuries, there was much
debate between the primacy of algebra over geometry or vice versa.1

The philosopher-mathematician Rene Descartes (1596-1650) is usu-
ally credited with merging the two fields together into analytic geom-
etry, or as it is also called, coordinate geometry. Descartes, however,
never actually made use of any coordinate system. His contribution
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in the first example we chose, is associated with the horizontal direc-
tion or x-axis. Similarly, the second coordinate, 3, is associated with
the vertical direction or y-axis. This is why the term “ordered pair” is
used.

Ordered pairs can be generated by using a formula or by collecting
data. More often than not, real-world problems are investigated by
collecting data and then plotting points (ordered pairs) in the coordi-
nate plane to generate a “scatter plot.” Hopefully, a pattern emerges
between the two variables that can be interpreted and extrapolated.
The statistician, business person, and social and physical scientist, all
try to find a “mathematical model” (an equation) that describes the
relationship between the two variables. Once the correct relationship
is found (that is, an equation is determined) the art of prediction
making can be taken seriously. For instance, a graph that shows a cor-
relation between the number of breast cancer deaths and fat con-
sumption can be used to predict the optimum daily fat consumption,
and the risks associated with varying levels of fat intake. 

Classroom instruction in mathematics does not focus on data col-
lection. The student is usually subjected to endless formulas without
any real-world meaning. Only those few students who take courses in
chemistry and physics begin to see how the mathematics they have
studied is actually applied. Otherwise, students spend their time
plugging the x-value into a given formula, which in turn produces a
y-value, thereby obtaining ordered pairs which are then plotted on
graph paper. This type of procedure always yields perfect looking
relationships between variables, which is not the case in the real
world. Even my gifted students were confounded when presented
with real-world data for the first time. In a sense, they have been
brainwashed; they do not see that in the real world most formulas
represent tendencies, and not exact relationships. Students spend so
much time seeing perfect curves emerge with formulas that they fail
to see that nature, at best, only approximates these ideal shapes. Most
students are not provided with an opportunity to plot real data for
the purpose of discovering relationships.
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To investigate the relationship between two variables, two number
lines, one for each variable, are needed. The lines, however, are
arranged perpendicular to each other as in Figure 7.3. The negative
parts of the number lines have been omitted for simplicity.

The two number lines form a coordinate plane, or a Cartesian
Coordinate System. The horizontal number line is called the x-axis
and the vertical number line is called the y-axis. To locate a position
(a point) in the plane an “ordered pair” (or set of coordinates) is
required. For example, in Figure 7.3 the ordered pair (2,3) represents
the point in the plane that is located two units to the right of the
point (0,0)—called the origin—and three units above the x-axis.
The horizontal distance from the origin is called the x-coordinate
or abscissa, and the vertical distance from the x-axis is called the
y-coordinate or ordinate. 

Had we wished to plot the point (3,2) rather than (2,3), we would
have gone over 3 and up 2. The first coordinate in the parentheses, 2,



128 Living With Math

Formulas and Data

An example of using a formula to generate ordered pairs can be
shown with the algebraic expression $5.00t cited earlier. 

Recall that “t” represented the time worked and the product
$5.00t represented the money earned. In equation form, this is writ-
ten as:

money earned = $5.00t, or as, y = $5.00t where y stands for the
earnings and t represents time in hours and plays the role of x. It
doesn’t matter if we call the x-axis the t-axis as long as it’s the hori-
zontal axis.

To generate ordered pairs from this formula, we insert t values and
compute the corresponding y values (e.g., if t = 5, y = $25).

Table 7.1

Values generated using the equation y = $5.00t 

Time(t) Earnings(y)
0 0
1 $ 5.00
2 $10.00
3 $15.00
4 $20.00
5 $25.00
6 $30.00
7 $35.00
8 $40.00

The values in Table 7.1 can be expressed as the ordered pairs:
(0,0), (1,$5.00), (2,$10.00), (3,$15.00), (4,$20.00) (5,$25.00),
(6,$30.00), (7,$35.00), (8,$40.00). These points are graphed in
Figure 7.4.

Notice how perfectly straight the points line up—a result of plug-
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ging numbers into a formula. A straight line is drawn through the
points in Figure 7.4, thus allowing one to read off earnings for other
than the whole number of hours worked. No data collection was
needed to generate this graph. The equation was determined by the
pay rate, which was given. Now let’s consider a real-world problem. 

Data was collected from various countries for a 1975 study using
fat consumption in grams per day and the number of breast cancer
deaths per 100,000 females (Table 7.2).

Table 7.2

Fat Consumption and Breast Cancer Deaths

Country Fat Consumption Grams/Day Deaths/100,000
Thailand 24.9 0.75
Japan 35.3 3.56
El Salvador 39.7 1.13
Taiwan 42.4 4.43
Ceylon 46.0 2.44
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what is called a “best-fit line” for a scatter plot. None of these con-
cerns us here. For our purposes it is enough to ask the reader to “eye-
ball” a line, i.e., sight along the data and draw a line that seems like a
good representation of the trend. 

Notice where the trend-line in figure 7.5 intersects the horizontal
axis. The intersection is at approximately 20 grams of fat per day.
This amount of fat represents about 10 percent of the calories [(20 ×
9)/2000] × 100 = 9% on a 2000 calorie diet. Recall that the recom-
mended percentage of calories derived from fat is 30 percent. Using
the trend line we see that 67 grams of fat (which is equivalent to 30
percent fat consumption for a 2000 calorie diet) corresponds to
about 8 deaths per 100,000—an improvement over the 1975 figure
of 20 per 100,000 for the United States (see Figure 7.5 or Table 7.2).
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Country Fat Consumption Grams/Day Deaths/100,000
Panama 56.5 7.44
Bulgaria 66.6 8.33
Portugal 67.2 12.74
Yugoslavia 70.8 6.43
Poland 86.6 10.59
Czechoslovakia 90.8 14.64
Hungary 96.5 13.21
Austria 116.8 16.54
Australia 128.4 18.57
Germany 134.4 16.67
Switzerland 135.0 21.36
Canada 140.1 23.18
United States 146.0 20.45
Netherlands 152.6 26.00

Source: Carroll,K., “Experimental Evidence of Dietary Factors in
Hormone Dependent Cancers” Cancer Research, 35:3374, 1975 

Data interpolated from graph: error �2.0 grams/day, �.20
deaths/100,0003

The second column—Fat Consumption in Grams/Day—provides
the horizontal data and the third column—Deaths/100,000—pro-
vides the vertical data. An example of an ordered pair for this data set
is (24.9,0.75) for Thailand. A scatter plot of Table 7.2 is given in
Figure 7.5.

The first thing to look for in Figure 7.5 is a general trend. It
appears that as fat consumption increases so does the number of
deaths. This means there is a correlation between the two variables.
But can the correlation be best represented with a straight line or a
curved line? Since there is no obvious curvature to the data, a linear-
fit (straight line) is the simplest and most reasonable approach. 

The line in Figure 7.5 represents the general trend of the data.
There are a number of different mathematical ways to determine
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and every star and particle of matter in the universe, are far too weak
to perturb the overall elliptical motion of the planets as they orbit the
sun. But regardless of how small these affects may be, they do still
exist. In reality, the planets do not travel in orbits that repeat their
motion over the same path. Their motion is therefore not exactly
elliptical. We can easily account for the effects of the larger planets of
the solar system, but not every particle of matter in the universe, nor
is it necessary to do so. We ignore them because they will not
influence our observations or calculations in any significant way. We
can still predict where Mars will be at 10:00 P.M. on March 8, 2061.
By assuming elliptical motion, we can send a spacecraft to orbit Mars
or have Viking landers explore its surface. It matters little to the engi-
neer if the geometric center of Mars is a fraction of an inch off of
where the theoretical (elliptical) equation predicts.

From our vantage point, an ellipse expresses nature’s structure for
planetary orbits. But in reality, it is an incredibly good approxima-
tion—not truth. No equation perfectly describes any real-world phe-
nomena. Ultimately, every equation that is written to explain a real-
world situation is an idealized view of reality. So does mathematics
describe objective reality or merely humankind’s subjective “macro-
scopic” view? The best we can say is that the better the data fits our
chosen mathematical model, the better we understand how the vari-
ables in question relate to each other. We do not lightly ignore other
variables, but choose judiciously those that are considered to provide
the best results and offer the greatest insights. 

Finding the Equation of a Trend Line 

It was shown previously that by plugging numbers into an equa-
tion, a series of points could be generated that formed a straight line.
The reverse process is also possible; an equation can be determined
from a line. Once a trend line is drawn, it represents the relationship
between the variables in our experiment. Any process used to find the
equation of a line can equally be applied to finding the equation of a
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Might we do better by reducing our fat consumption to 10 percent
of our total caloric intake instead of the recommended 30 percent? 

It is important to properly understand what a trend line means.
The closer the data points cluster around the trend line the better the
fit. In the ideal case, the line would go through every data point like
the contrived salary example. The better the trend line is matched to
the data, the greater the confidence we have in using the equation of
the trend line to relate the two variables.

Scientifically, it is hoped that the equation used to describe the
trend line represents the true relationship between the variables,
admitting an accepted range of error. The more the data is scattered
about the line in a random fashion without major deviations, the
more apt we are to believe the fit is a true expression of reality. Then
again, if the data were biased in one direction or if there was a dis-
tinctive curve away from the straight line fit, this would cause grave
concern. Yet we might temporarily ignore such problems if the errors
involved were not substantial. But under no condition would we
believe such a trend line is the correct statement for relating the two
variables. This brings up a somewhat philosophical point. 

* * * 

What made Kepler certain that the planets of our solar system
travel in ellipses about the sun? He used Tycho’s data for the planet
Mars and found that the closest shape that fit the orbit was an ellipse.
It should be pointed out that this conclusion was not at all obvious at
the time, since the elliptical shape of Mars’ orbit is nearly circular.
But do the planets travel in perfect ellipses? Kepler’s work shows (and
Newton’s universal theory of gravity confirms) that if only one force
(due to the sun) acts on each planet, then each planet follows the
path of a perfect ellipse. Only under this condition does the equation
for an ellipse hold. But everything is connected. Some things are just
connected more strongly than others.

The gravitational effects of the other planets of the solar system,
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base (height/base) is 40/8. The same ratio holds for the smaller trian-
gle, where the height/base is 25/5. For that matter, any right triangle
that is formed by adjoining vertical and horizontal lines to the
hypotenuse will give the same ratio of height/base. This is no coinci-
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trend line. This assumes we are merely taking our “best guess” at a
representative line through the data—drawing it in by hand—rather
than a mathematical approach. 

Consider the trend line in figure 7.5, where Thailand appears to
fall exactly on the line. If we had the equation for the trend line, we
could insert the value for fat consumption (24.9 grams/day) and the
equation would give the experimental value of .75 deaths/100,000.
But if the fat consumption value for El Salvador (39.7 grams/day)
were inserted, the equation would give a value closer to Japan’s 3.56
deaths/100,000 rather than El Salvador’s 1.13 deaths/100,000. One
can, however, mathematically compute a reasonable error range for a
scatter plot and its associated trend line. This is why it is not uncom-
mon to see numbers such as 50.3 ± 2.5 arising from statistical results.
Such numbers mean that there is a very high probability that if the
experiment were performed, the answer would be some where
between 47.8 and 52.8 for a given x value. It is unnecessary for our
purposes to digress into the mechanics of error analysis. Just bear in
mind that trend lines are not expected to yield exact answers, only
reasonable approximations.

* * *

In the spirit of Descartes, we wish to find a relationship between
an algebraic equation and a straight line. Odd as it may sound, right
triangles are used to provide the needed insight.

A right triangle has two “legs” which meet at a 90° (right) angle
and are referred to as the base and height of the triangle, and a third
side connecting the two legs called the hypotenuse (see Figure 7.6).
Any diagonal line can serve as the hypotenuse of an infinite number
of right triangles. 

In Figure 7.7 a line (ACE) is drawn in the coordinate plane with
two triangles. The large triangle (ADE) and the small triangle (ABC)
both share the line as their hypotenuse. The base AD has a length of
8 units and the height DE is 40 units. The ratio of the height to the
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the center of the coordinate system (0,0), the origin. Unfortunately,
if a line does not go through the origin we cannot find its slope and
consequently its equation by forming the simple ratio y/x as we did
previously. To find the slope, and therefore the equation of any line
in the plane, requires one additional step. 

Finding the General Equation of a Line

To investigate the equation of a line not constrained to pass
through the origin, we use the following example. 

Many repair people charge an hourly rate and an additional fee for
making a house call. Let’s say a T.V. repair person charges a set fee of
$35.00 just to walk through your door, and an hourly fee of $20.00.
Therefore, at t = 0 you already owe $35.00. After the first hour of
work, you owe $35.00 + $20.00/hour × 1 hour, after the second
hour, $35.00 + $20.00/hour × 2 hours and so on. The general equa-
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dence. All straight lines have what is known as a constant slope,
defined by the ratio of height/base. Since the height is a measure of
the y value and the base is a measure of the x value, we can express
this ratio as y/x = 5. This is true only if the line contains the point
(0,0). The relationship y/x = 5, is really the equation of the
hypotenuse and can be rewritten as y = 5x. This is done by multiply-
ing each side by x. A concrete example will help: 10/2 = 5, let the 10
play the role of y, and 2 play the role of x. If each side of the equation
is multiplied by 2 we have: 10/2 × 2 = 5 × 2. The left side equals 10
(or y) and the right side equals 5 × 2 (or 5x). As long as the equation
balances, each side still equals the other, nothing incorrect has been
done. Any mathematical process is valid if the same mathematical
operation is performed on each side of an equation. See the end of
this chapter for more examples of this.

The equation y = 5x is identical to y = $5.00t (x and t represent
unknowns), and therefore has the same graph. Since any straight line
can have a horizontal and a vertical line adjoined to it, thus making a
right triangle, the equation of the line can be found. If the line con-
tains the point (0,0) then the equation of the line can be found
by finding the slope (height/base) of the line. For example, if the
ratio height/base for a line is 7, then y/x = 7; multiplying both sides
by x gives y = 7x as the equation of the line. 

The slope of a line is also referred to as the “rise over the run” as
well as the ratio of height/base. If the line were nearly vertical then
the triangle would have a small base (run) and large height (rise),
meaning the slope is a large number. By the same reasoning, if the
base (run) were large and the height (rise) small, the line would be
closer to horizontal and its slope would be a small number. The ratio
of the rise (height) to the run (base) is an indication of how the line
is oriented in the coordinate plane. How would the line be oriented
in the plane if the rise and run were equal? If the height were zero
and the base any number? 

When t = 0 (no time worked) in the equation y = $5.00t, the wage
y is also 0. The graph of the line y = $5.00t, therefore passes through
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55)/(5 � 1) = 80/4 = $20.00/h.
Similarly, for the points (2,75) and (4,115) we have:
m = (115 � 75)/(4 � 2) = 40/2 = $20.00/h. 
We already know that $35.00 is equal to b, since it is the offset.

Hence, y = mx + b is c = ($20.00/h)t + $35.00, where the roles of
(x,y) are played by (t,c). 

We are now in a position to determine the equation of the trend
line in Figure 7.5. Ignoring the data, we choose any two points that
we can accurately read on the line. (Remember, a line is composed of
an infinite number of points.) Fortuitously, there are a number of
data points that lie on the line, so determining the correct coordi-
nates will be easy. It is usually best to choose two points that span as
much of the data set as possible; for our case this means choosing
Thailand (24.9,.75) and Australia (128.4,18.57).

The slope m equals: (18.57 � .75)/(128.4 � 24.9), and reduces to
approximately .172 deaths per one hundred thousand women, per
gram of fat consumed per day. Since we do not know “b” yet, all we
can write is, y = .172x + b.

The unknown “b” can be found by extending the line and reading
off where it crosses the y-axis, or mathematically by inserting any
ordered pair (x,y) on the line into the equation y = .172x + b. 

To better understand this last statement, consider the numerically
simpler example: y = 2x + b and the point (3,12) known to be on the
line. By plugging in for x and y we have: 12 = 2(3) + b. The
unknown b can be found by subtracting 2(3) from each side of the
equation [12 � 2(3) = 2(3) � 2(3) + b]. Recall that any operations
are permissible as long as the same operation is performed on each
side of the equation. This leaves 6 = b or b = 6, since the unknown is
commonly written on the left. The final equation in our simplified
example is: y = 2x + 6.

Returning to the original problem (y = .172x + b), it is already
known that both (24.9,.75) and (128.4,18.57) are on the line, so
either point can be used to find b. Since it does not matter which
point we choose, we’ll select the first point, (24.9,.75). Therefore: .75
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tion that represents this is: Cost = $35.00 + $20.00t or c = $35.00 +
$20.00t. It is understood that c (the cost) is playing the role of y, and
t (the time) means the same as x. 

Several ordered pairs for this equation are:
(0 hours, $35.00), (1 hour, $55.00), (2 hours, $75.00).
Figure 7.8 is a graph of the equation c = $35.00 + $20.00t. Notice

that it is offset from the origin, and is oriented differently than the
line y = $5.00t.

Do the ratios of c/t formed in Figure 7.8 yield constant values? For
example, does $55.00/1 = $75.00/2? No. But ($55.00 � $35.00)/1
equals ($75.00 � $35.00)/2. Subtracting $35.00 removes the offset,
and therefore preserves the rule for y/x.*

Any two points (x₁ , y₁) and (x₂, y₂), where the subscripts, 1 and 2,
stand for the first and second points picked, can be used to find a rise
and a run. When the two y’s are subtracted from each other (y₂ � y₁)
the offset is canceled out. For instance, using the two points (1,55)
and (5,135) gives $135 � $55 = $80 for the rise. By expressing
$55.00 as $35.00 + $20.00, and $135 as $35.00 + $100.00, it is easi-
er to see how the $35.00 cancels out. The calculation is: ($35.00 +
$100.00) � ($35.00 + $20.00) = $35.00 � $35.00 + ($100 � $20)
= $80.00. 

The general expression for the slope is: (y₂ � y₁)/(x₂ � x₁)
and the general equation for a line can be written as:

y = mx + b, where the m represents the slope, and b the offset,
commonly called the y-intercept (that is, where the line intersects
the y axis).

We can now verify that c = $35 + $20t (or c = 20t + 35, using the
form y = mx + b) is the equation for the repair work. 

The slope can be found using any two points on the line. For
example, using the points (1,55) and (5,135) yields: m = (135 �

* Whenever a slope is stated as y/x there is an implied understanding that y/x is
really (y-0)/(x-0). The differences in the y-values and x-values are often referred to
as “delta-y” and “delta-x” values, written as �y and �x.
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attempting to extrapolate and predict with a model. 
The slope of the line also provides information. In the first exam-

ple, a slope of $5.00/hour indicated the rate of pay was constant. In
the breast cancer example, the slope of .172 gives the number of
women per 100,000 dying for each gram of fat eaten over 20 grams
per day. 

On a graph with the y-axis representing distance traveled and the
x-axis representing time, the slope has units of distance over time
which is defined as speed. The slope of real-world data is a meaning-
ful ratio. Most basic algebra books ignore this fact, and instead focus
on the ratio of dimensionless quantities. (Dimensionless in this con-
text means there are no units assigned to the numbers—no hours,
miles, grams, etc.. Most dimensionless problems have no connection
to the real world.) Even when units are given, mathematics text
books and mathematics teachers are not prone to emphasize their
importance.
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= .172(24.9) + b, subtracting .172(24.9) from each side of the equa-
tion yields, b = �3.53. Now that m and b are known, the equation
of the trend line can be written as: y = .172x � 3.53. 

The above equation is the mathematical model relating breast can-
cer deaths to fat consumption. The model predicts that if 180 grams
of fat are eaten per day, the incidence of breast cancer will be: y =
.172(180) � 3.53, or 27.4 deaths/100,000. (Where we use only
three significant figures.) It would be surprising if this answer were
correct, because of the scatter of the real data about our model.
Therefore, the y value should be stated with a plus or minus (±)
range of values as previously discussed. Though it is not an accepted
method for error analysis, finding the maximum difference between
the model’s value and the experimental value, for a given x, can give
an upper bound on the error range. Remember, even with proper
error analysis, predicted values represent only one possible answer out
of a narrow range of possibilities.

As stated previously, the line crosses the x-axis at about 20 grams
of fat, which means that the model predicts that close to 20 grams of
fat consumption per day (remember there is error) is optimum for
reducing breast cancer deaths. But what does the y-intercept, �3.53,
tell us? 

The y-intercept has no meaning here. It says that if zero fat is
eaten there will be �3.53 deaths per hundred thousand females.
Such “information” is meaningless, especially since without fat in our
diets we would die. Like so many things, too little or too much can
be hazardous. 

For values less than 20 grams of fat, the mathematical model (y =
.172x � 3.53) “breaks down” and is of no use. It is also unreasonable
to assume that the model remains linear (straight) for ever increasing
values of fat consumption. Students often memorize formulas per-
taining to the real world, thinking them universal statements. Such
formulas do not exist. All mathematical models (equations) have a
limited domain over which they can yield meaningful results. A
proper understanding of any physical process is necessary before
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function. Specifically, if a vertical line intersects the graph in
more than one place, the graph does not represent a functional
relationship. Furthermore, if a horizontal line intersects the graph
only once, the graph is a single-valued function. And if a horizon-
tal line intersects the graph in more than one place, it is a many-to-
one function. Often if a horizontal line intersects in just two places,
the function is referred to as two-to-one.

Figure 7.10 is an example of a two-to-one function. It shows how

the percentage of national debt to GNP has changed over time.
A horizontal line drawn across the graph at the 50 percent level inter-

sects at two different corresponding times (1964 and 1986). Other hor-
izontal lines (below the 50% level) have more than two different x values
for the same y value, hence the more proper designation as two-to-one.
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Functions 

A function is a special kind of relationship. Specifically, it is a
unique relationship between the independent variable (the x-coordi-
nate) and the dependent variable (the y-coordinate), where each
independent variable must be associated with only one dependent
variable. In the salary example, the worker is never paid two different
sums for the same time worked; y = $5.00t is therefore a function.
Any equation that represents a straight line (all equations with the
form y = mx + b) is a function—more correctly, a linear function.
Study Figures 7.9a and 7.9b; the first is a function, the second one
isn’t. 

In Figure 7.9a each ordered pair has a different x associated with a
different y; it is thus a function—in particular, a single-valued func-
tion. Figure 7.9b, however, has two different y values for each x
value, with the exception of (0,0); this disqualifies it from being a
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1. Two points determine a line. Given the points (2,10) and (5,19)
determine the equation of the line that passes through them.

The objective is to find an equation with the form y = mx + b,
where m and b are the unknown constants to be found.

First plot the two points and then draw the line they form (see
Figure 7.11). It is not really necessary to draw the line, but a visual
aid is always helpful.

The ratio of the height to the base for a right triangle constructed
on this line equals the slope of the line m. The difference between the
two given y values is (19 � 10). Similarly, the difference between the
two given x values is (5 � 2). Therefore, the slope is m = (19 �
10)/(5 � 2) = 3. Knowing the slope allows us to write: y = 3x + b.
Since the graph intersects the y-axis at 4, this must be b.

Often the intercept is found mathematically, because it cannot
always be read off the graph so simply. This is done by replacing the x
and y (in y = 3x + b) with any coordinates that are on the line. Since
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(A certain liberty is being taken with this example, since the 50 percent
mark does not correspond exactly to 1964 and 1986.) 

Figure 7.10 is a two-to-one function when y equals 50 percent
because two different independent variables are paired with the same
dependent variable—(1964,50%) and (1986,50%). If the situation
were reversed (that is, if the x values were the same and the y values
were different, e.g., (1964,50%) and (1964,65%) then Figure 7.10
would not represent a function; nor would it make any sense within
the given context. 

Much of the physical world can be described with functions,
which is why the study of mathematics takes on such importance.
Everything from biological growth to the motion of the Earth
through space can be written as a mathematical function.

Below are several exercises to help reinforce some of the concepts
covered in this chapter. It is important that you at least read over
problem 2, since we return to it in the next chapter.

Exercises

Find the value of “b” for the following problems.
1. y = 3x + b, (3,15) is on the given line.   Answer: b = 6.
2. y = 2x + b, (6,8) is on the given line.   Answer: b = �4.
3. 2y = 3.5x + b, (0,2) is on the given line.   Answer: b = 4.
4. y/2 = × + b, (6,12) is on the given line.   Answer: b = 0.

(A similar problem to the ones above was worked out on Page 139)

Problems:

There are four problems given below. Problems 1 and 2 are
worked out, Problems 3 and 4 are not. Study Problems 1 and 2 and
then do Problems 3 and 4 on your own.
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b) Predict the concentration of carbon dioxide in the year 2000,
for this model. (We will discuss this problem more thoroughly in
Chapter Eight.)
c) How reliable is the answer for part b?

Answers

a) The line passes through the data point (1959,316.2) and
through the point (1967,322), which is not a data point. The slope
of the line is: m = (322 � 316.2)/(1967 � 1959), which gives .725
ppm/year. Thus, so far we have: y = .725x + b. To find b, the tempta-
tion is to use 316.2 since this is where the line intersects the y-axis.
However, the y-intercept b is defined where x is zero. Since we do
not know the y-value when x equals zero (it is far off the graph), we
must plug in one of the given points and solve for b. Using the first
point (1959,316.2) gives: 

316.2 =.725(1959) + b, b = 316.2 � .725(1959) or �1104.

The equation linking the variables of time and atmospheric carbon
dioxide can then be written as: y = .725x � 1104.

There is an option that we could have used to simplify the num-
bers in this problem. It is perfectly correct to define 1959 as the zero
year, and express the x-axis from 0 to 10. The equation would then
simply be: y = .725x + 316.2 

For instance, if we wish to calculate the ppm value in 1949 with
this model, the first equation gives:

y = .725(1949) � 1104 which works out to 309 ppm. Using the
second equation, we insert �10 for 1949, since 1959 = 0, thus giving
us: y = .725(�10) + 316.2 which also works out to 309 ppm. 

b) If “year 0” corresponds to 1959 then “year 41” corresponds to
2000. Using the second equation above we get:

y = .725(41) + 316.2 which gives 345.9 ppm.

146 Living With Math

both (2,10) and (5,19) are on the line, either one can be substituted.
Choosing (2,10) yields: 10 = 3(2) + b, or 10 = 6 + b. Subtracting 6
from each side of the equation gives, b = 4. Having found m = 3 and
b = 4, the equation of the line can now properly be written as, y = 3x
+ 4. 

Any value of x the reader chooses for the equation y = 3x + 4 will
produce a corresponding value of y such that the ordered pair (x,y)
must be on the line in Figure 7.11. Try inserting 5 for x to convince
yourself that (5,19) is indeed on the line.

2. Figure 7.12 is a scatter plot of the atmospheric concentration of
carbon dioxide in ppm from 1959 to 1968. The data is given as
(year,ppm): (1959,316.2), (1960,316.7), (1961,317.2),
(1962,318.9), (1963,319.2), (1964,320), (1965,320.9),
(1966,321.5), (1967,321.8), (1968,322.5).
a) Assuming this data to be linear, “eye-ball” a best-fit line and
determine its equation. 



149beyond  arithmetic

Source: “Diabetes Care” 1991. 
Data interpolated from October 1992 “Scientific American”

graph: error �4 liters, error �0.9 diabetes/100,000.

a) Graph a scatter plot with consumption as the independent vari-
able (horizontal axis), and incidence number as the dependent vari-
able (vertical axis). 
b) Assume a linear model (a straight line) and “eye-ball” a best-fit
line for the data.
c) According to your equation, how many liters of milk per year
can safely be consumed? This can be read directly off the graph, or
calculated from the answer in part b by setting the incidence num-
ber to zero.
d) What is the maximum number of ounces of milk that can be
consumed per day based on your answer in part c? (One liter equals
1.0567 quarts)
e) What is the annual incidence for diabetes per 100,000 for a con-
sumption rate of 250 liters per year according to your model?
f ) How reliable is this value?
g) Does the data really represent a function since Canada and the
United States both have the same independent variable paired with
two different dependent variables, as do New Zealand and
Denmark? 
(Answers will vary depending on the best-fit estimate.)

Answers:

b) y = .154x � 6.3

c) 41 liters per year

d) 3.8 ounces

e) 32.2 diabetes/100,000

f ) Since 250 liters per year is not too far removed from the Finland
value, the resulting 32.2 diabetes/100,000 would not be an unreason-
able extrapolation. Still, there is no way of really knowing (short of
finding a country where the intake is 250 liters per year) without a
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c) The year 2000 is quite far beyond our last data point in 1968,
so caution needs to be exercised here—unless we are sure that the rate
of increase remains constant for the rest of the century. Had the ques-
tion read 1975 instead of 2000, there would be less cause for con-
cern, since we would not have to extrapolate so far into the “future.”
We will look more deeply into the implication of a limited data set
(as in this problem) in the next chapter.

3. Find the equation of the line given the points (3,17) and (6,29).
Don’t forget to draw the line as a visual aid. 

Answer: y = 4x + 5

4. Table 7.3 is a summary of the results of a study done across vari-
ous countries in an attempt to find an association between the
amount of cow’s milk consumed in liters per year and the annual
incidence of diabetes for children of ages 0 to 14.

Table 7.3

Table showing milk consumption rate for various countries and the
corresponding incidence of childhood diabetes for children ages of 0-14. 

Country Liters Consumed Annually Diabetes/100,000

Japan 38 1.4
France 79 4.4
Israel 90 3.9
Canada 107 8.9
United States 107 13.3
Netherlands 114 9.5
Great Britain 134 14.7 
New Zealand 138 11.4
Denmark 138 13.7
Sweden 169 22.8
Norway 183 20.0
Finland 231 30.0
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better understanding of the human body. Additionally, common
sense demands that the relationship cannot remain linear, since
human beings do not have the capacity to drink endlessly.

g) Yes. If the association between the two variables was perfect (a
straight line) it would mean there were no other effects influencing a
child’s disposition to developing diabetes. This is not the case. Other
factors, such as genetics, will also play a role, but milk in the diet of
children is still a strong enough factor to show an obvious trend. And
it is with this trend line that the function is defined.


